If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+32x-19=0
a = 7; b = 32; c = -19;
Δ = b2-4ac
Δ = 322-4·7·(-19)
Δ = 1556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1556}=\sqrt{4*389}=\sqrt{4}*\sqrt{389}=2\sqrt{389}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{389}}{2*7}=\frac{-32-2\sqrt{389}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{389}}{2*7}=\frac{-32+2\sqrt{389}}{14} $
| x-¾=½ | | 3(7x)=-27 | | 4x=2x/3+1/3 | | 4x=2x+1/3 | | 2.6x=-1.3 | | 3/7x=-1/3 | | 2x+19=10x-48 | | 4x²-20x=11 | | (X-1.5)(x-1.5)=0 | | 18x-5x+2=-(-3x)-1 | | m(2m-7)=3 | | 8x-5x+2=-(2x-13 | | 2/3(6j+9=3j+7) | | 7y2+1=3y-2 | | 7s-35=84 | | 4t2=4 | | 2b^2+3=67 | | x^2-20x=100=0 | | 9x=8640 | | 2x^2=64,98 | | 3(x+2)=5(x−2) | | Y=x2-5x+4 | | 5^(1.4x+3)=6^4.2x | | 5^(1.4x+3))=6^4.2x | | 5^((1.4x+3))=6^4.2x | | 3x-30-18=9x+6 | | 4a+3=4−2a | | 51000=3300,80000=x | | 500=200+40t/1+0.05t | | 18x=57 | | 3s+5=5s−5 | | 5z+8=3z-8 |